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Abstract-- A digital gate driver IC with real-time gate
current (Ic) change by sensing drain current (lp) is applied
to SiC MOSFETSs, and it is demonstrated that the IC always
reduces switching loss and switching noise by always
performing appropriate active gate driving even when the
operating conditions of SiC MOSFETS, such as load current
and junction temperature, change. The IC integrates all of a
current-source based digital gate driver which changes Il in
6 bits, a dlp/dt sensor to detect I switching timing, and a
controller into a single chip. In the turn-on measurement of
an SiC MOSFET at 600 V and 25 °C, when the load current
changes to 20 A, 70 A, and 120 A, compared with the
conventional single-step gate drive, the active gate drive using
the developed IC reduced the switching loss by 17 %, 12 %,
and 11 % under Ip overshoot-aligned condition, respectively.

Index Terms-- Gate driver, switching loss, switching noise,
SiC.

I. INTRODUCTION

A lot of active gate drivers (AGDs), where the gate
driving waveform is controlled during the turn-on/off
transients, have been proposed to reduce both the
switching loss (ELoss) and the switching noise of power
devices. AGDs can be classified into two types, open-loop
control [1-6] and closed-loop control [7-20]. The closed-
loop AGDs are required instead of the open-loop AGDs,
because the optimal driving waveform changes depending
on the operating conditions (e.g. load current (I.) and
junction temperature (Tj)) [21]. Fig. 1 summarizes the
design choices in conventional closed-loop AGDs. To
make the closed-loop AGDs practical, the following three
points are required: (1) single-chip integration instead of
PCB implementation for lower cost, (2) real-time control
instead of iterative control to reliably handle dynamic
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Fig. 1. Design choices in closed-loop AGDs. This work is shown
in blue.
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change of operating conditions, and (3) programmable
AGDs instead of fixed-function AGDs that require
individual optimization for different product varieties of
power devices. In the closed-loop AGDs, however, no
previous paper has realized all of (1) to (3).

To solve the problems, a digital gate driver (DGD) IC
with real-time gate current change (RGC) by sensing drain
current (Ip) that realizes all of (1) to (3) was proposed in
[22]. The design choices in [22] are shown in blue in Fig.
1. The IC [22] integrates all of a current-source based
digital gate driver which changes gate current (Ig) in 6 bits,
a dlp/dt sensor to detect lg switching timing, and a
controller into a single chip. In [22], the operation was
demonstrated for IGBTs. In contrast, in this paper, the
DGD IC with RGC [22] is applied to SiC MOSFETS for
the first time. It is shown that the IC always reduces E| oss
and switching noise by always performing appropriate
active gate driving even when I and T; of an SiC
MOSFET change.

Il. DIGITAL GATE DRIVER IC WITH REAL-TIME GATE
CURRENT CHANGE

Figs. 2 and 3 show a circuit schematic and a timing chart
of the DGD IC with RGC [22], respectively. In the
following, turn-on is discussed, whereas the exact same is
true for turn-off. The IC includes dlp/dt detector for the
state change, controller for RGC, and a 6-bit current-
source type digital gate driver with variable I in 64 levels,
where lg = npmos x 48 mA and npmos is an integer from 0
to 63. At turn-on, an active gate driving is performed in
three slots from t; to t; with different g of strong (ny) -
weak (ny) -strong (ns), and this driving method is defined
as stop-and-go gate drive (SGGD) [23]. n1 to nz are preset
by a digital input (Scan In), while t; and t, are
automatically determined by RGC by sensing Ip. An
important feature of this IC is the full integration of t; and
t, real-time automatic control functions on a single chip.
The real-time control is completed only by the IC and the
external FPGAs or MCUs are not required. The real-time
control of t; and t; is done by detecting dlp/dt by sensing
the voltage (Vss) of the parasitic inductance (Lss) between
Kelvin source and power source in Fig. 2, because Vss = —
Lss (dIp/dt). Specifically, as shown in Fig. 3, the end timing
of t; is determined by detecting the negative Vss at the
beginning of Ip flow using a comparator with the reference
voltage of Vrer, and the end timing of t; is determined by



detecting the positive Vss at the timing immediately after
Io overshoots using a comparator with the reference
voltage of Vgrern. Fig. 4 shows a die photo of DGD IC
fabricated with 180-nm BCD process. The die size is 2.0
mm by 2.5 mm.
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Die photo of DGD IC fabricated with 180-nm BCD

I1l. MEASURED RESULTS

A. Measurement Setup

Figs. 5 and 6 show a circuit schematic and a
measurement setup of the double pulse test using the
developed DGD IC and an SiC  module
(BSM120D12P2C005, 1200 V, 134 A), respectively. The
SiC module is placed on a hotplate for measurement under
different temperature. Figs. 7 (a) and (b) show timing
charts of the conventional single-step gate drive (SSGD)
and the proposed SGGD for comparison, respectively. In
SSGD, n; is varied, which emulates a conventional gate
driver with varied gate resistance. In SGGD, (ns, nz, n3) are
preset to (30, 13, 27), and t; and t; are automatically
determined by RGC by sensing Ip.

The reason for setting (n1, nz, n3) = (30, 13, 27) is
explained here. In SGGD, in principle, n1 should be set
large to reduce turn-on delay, n2 small to reduce the drain
current overshoot (loverstoot), and n; large to reduce
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Fig. 6. Photo of measurement setup.
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Fig. 8. Measured waveforms in SGGD with RGC with varied I from 20 A to 120 A in 10 A increments. (a) Measured Ip waveforms at T, = 25
°C. (b) Measured Ip waveforms at T; = 125 °C. (c) Measured Vgs waveforms at T, = 25 °C. (d) Measured Vgs waveforms at T, = 125 °C.

ELoss [23]. In the actual measurements, however, n; = 30,
because if ny is set to 31 or higher, ringing at the beginning
of the t1 period of Vss waveform shown later in Figs. 12 (b),
13 (b), and 14 (b) increases and exceeds Vrern and VgerL,
causing the dlp/dt detector to make a false detection. In
addition, nz = 27 was set for the measurements, because if
ns is set to 28 or higher, the second overshoot of Ip shown
in Figs. 12 (b), 13 (b), and 14 (b) will be higher than the
first overshoot of Ip, and loverstoot Will not be controlled
by no. Finally, n; is a parameter with a degree of freedom
in its setting. In the pre-preparation measurements, it was
confirmed that the proposed SGGD operates normally in
the range of n, from 10 to 20. Setting n, = 10 results in a
large Eioss and small loverstoor, While setting n, = 20
results in a small E_oss and large loverstoor. In this paper,
n, = 13 was set to balance E_oss and loversHooT.

B. Proposed SGGD at Various I and T;

Figs. 8 (a) to (b) show the measured Ip waveforms and
Figs. 8 (c) to (d) show the measured gate-source voltage
(Ves) waveforms in SGGD with RGC with varied 1. from
20 A to 120 A in 10 A increments at T; of 25 °C and 125
°C, respectively. In Figs. 8 (c) and (d), the periods t; and t;
can be estimated from the surges in Vs waveforms. t; is
independent of I, while t, is dependent on I.. Fig. 9 shows
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the measured t vs. I at T; 0f 25 °C and 125 °C. Itis clearly
observed that as I, increases, t is automatically increased
by RGC. On the other hand, the T; dependence of t; is
almost negligible. In contrast, the T; dependence of t, was
clearly observed for IGBTs [22]. The reason why the T;
dependence of t; is almost negligible for SiC MOSFETS
can be explained by the smaller temperature dependence
of the SiC device characteristics compared to IGBTSs [24].
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C. Comparison of E_oss and loverstoot between
Conventional SSGD and Proposed SGGD

Figs. 10 (a) to (c) show the measured Eposs Vs.
loversHoot Of the conventional SSGD and the proposed
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Fig. 10. Measured E oss VS. lovershoor Of conventional SSGD and
proposed SGGD at T; =25 °C and 125 °C. (a) IL. =20 A. (b) I.=70
A (c)IL=120 A.
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SGGD atl. =20 A, 70 A, and 120 A, respectively. In each
graph, T is varied to 25 °C and 125 °C. The blue curve,
which represents T, = 25 °C, and red curve, which
represents T; = 125°C, show the trade-off curves of the
conventional SSGD with varied ni from 5 to 63. In all
cases, the proposed SGGD has lower E oss and lower
loversHoot than the conventional SSGD. At T; = 25 °C,
when I is varied to 20 A, 70 A, and 120 A, compared with
the conventional SSGD, the proposed SGGD reduces
ELoss by 17 %, 12 %, and 11 %, respectively, under the
IOVERSHOOT-aIigned condition, while it reduces loversHooT
by 17 %, 12 %, and 12 %, respectively, under the Eoss-
aligned condition. At T; = 125 °C, when I is varied to 20
A, 70 A, and 120 A, compared with the conventional
SSGD, the proposed SGGD reduces E|oss by 21 %, 10 %,
and 9 %, respectively, under the loversnoor-aligned
condition, while it reduces loversroor by 18 %, 11 %, and
5 %, respectively, under the E, oss-aligned condition.

In Figs. 10 (a) and (c), Points Al to A3, Points B1 to
B3, and Points C1 to C3 are defined for (I, T;) = (20 A,
25 °C), (120 A, 25 °C), and (120 A, 125 °C), respectively,
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T,=125"°C.



where Points ”B”s are the proposed SGGD, Point “A”s are
the conventional SSGD with closest loversHoor comparing
to proposed ones, and Point “C”s are the conventional
SSGD with the closest E_oss comparing to proposed ones.
The measured waveforms for these nine points are shown
later in Figs. 12 to 14.

Figs. 11 (a) and (b) show the measured E oss Vs.
loversHoot Of the conventional SSGD and the proposed
SGGD at T; = 25 °C and 125 °C, respectively. In each
graph, I is varied to 20 A, 70 A, and 120 A. Similarly, in

each graph, the red curve, which represents I. = 120 A,
black curve, which represents I = 70 A, and blue curve,
which represents I. = 20 A, show the trade-off curves of
the conventional SSGD with varied n; from 5 to 63. The
proposed SGGD has advantage over conventional SSGD
on lower E oss and lower loversHooT.

Figs. 12 (a) to (c) show the measured waveforms of
Point A1, which represents the waveform of SGGD with
n; = 13, Point B1, the proposed SGGD, and Point C1,
which represents the waveform of SGGD with n; = 17 in
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Fig. 12 Measured waveforms of Point A1, Point B1, and Point C1 in Fig. 10 (a) at I. =20 A and T, =25°C.
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Fig. 13 Measured waveforms of Point A2, Point B2, and Point C2 in Fig. 10 (c) at I = 120 Aand T,=25°C.
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Fig. 14 Measured waveforms of Point A3, Point B3, and Point C3 in Fig. 10 (c) at I. =120 Aand T, = 125°C.

Fig. 10 (a), respectively, under I = 20 A, T; = 25°C
condition. Fig. 12 (b) clearly shows that the start of Ip flow
and Ip overshoot are properly detected by comparing Vs
with VrerL and Vgrern, and that SGGD is realized with t;
and t, correctly controlled. Compared with the
conventional SSGD (Point Al and Point C1), the proposed
SGGD (Point B1) reduces Eoss from 2.3 mJ to 1.9 mJ by
17 % under loversHooT-aligned condition and reduces
loversHooT by 17 % under Eoss-aligned condition.

Figs. 13 (a) to (c) show the measured waveforms of
Point A2, B2, and C2 in Fig. 10 (c), as SGGD with n; = 13,
the proposed SGGD, and SGGD with n; = 15, respectively,
under I =120 A, T; = 25°C condition. Fig. 13 (b) clearly
shows that the start of Ip flow and Ip overshoot are
properly detected by Vs. Note also that comparing t in Fig.
12 (b) and Fig. 13 (b), where I_ changed from 20 A to 120
A, t increased from 94 ns to 255 ns. The I, dependence of
to is successfully controlled automatically by the proposed
RGC. Compared with the conventional SSGD (Point A2
and Point C2), the proposed SGGD (Point B2) reduces
ELoss from 13.5 mJ to 12.0 mJ by 11 % under loversHooT-
aligned condition and reduces loverstoot by 12 % under
ELoss-aligned condition.

Similarly, Figs. 14 (a) to (c) show the measured
waveforms of Point A3, B3, and C3, as SGGD with n; =
13, the proposed SGGD, and SGGD with n; = 14,
respectively, under I, = 120 A, T; = 125 °C condition. In
Fig. 14 (b), automatic control of t; and t; has been
successfully achieved by detecting Vss comparing to VrerL
and Vrern. Compared with the conventional SSGD (Point
A3 and Point C3), the proposed SGGD (Point B3) reduces
ELoss from 12.5 mJ to 11.4 mJ by 9 % under loversHoot-
aligned condition and reduces loverstoor by 5 % under
ELoss-aligned condition.

TABLE |
COMPARISON TABLE OF CLOSED-Loor AGDs
TPEL'15 |TPEL18| TPEL'21 ISsCC’'19 Isscc’21 This work
[11] [12] [14] [13] [18]
Target power Sic . SiC
device IGBT IGBT MOSFET Si MOSFET | GaN FET MOSFET
Vpp 0f high-
Sensor input dlf// dt, dlfll dt, dig/dt Vps side gate dlg/dt
cE cE driver
Timing | Timing of | Timing of Timing of Timing of
Feedback control | = Vee | orgrate | state state state state
target waveform
change | change change change change
Real-time control Yes Yes Yes No No Yes
Number _of states " 3 3 3 3
per switching
Preset parameters
for each state s Vos Rs s ls
Levels of NA 2 2 3 6 bit
parameter
. IC (Not fully | IC (Fully IC (Fully
Implementation PCB PCB PCB integrated)* | integrated) |integrated)
IC Process 130 nm 500 nm, 180 nm
HV CMOS | 600V SOI* BCD

*Voltage divider for Vg is not integrated.
**High-voltage IC process with the same breakdown voltage as V. of main circuit is required.

Table | shows a comparison table of the closed-loop
AGDs. The DGD IC with RGC [22] used in this work was
the first work achieving the fully integrated IC, the real-
time control, and the programmable Ig in the closed-loop
AGDs. In this paper, the DGD IC with RGC [22] is applied
to SiC MOSFETS for the first time.

IV. CONCLUSIONS

The DGD IC with RGC [22], integrating all of the
current-source based digital gate driver which changes I
in 6 bits, a dlp/dt sensor to detect I switching timing, and
a controller into a single chip, is applied to SiC MOSFETs
for the first time. The IC always reduces E oss and
loversHoor by the real-time control of t; and t; even when
IL and T; of an SiC MOSFET change. In the turn-on
measurement of an SiC MOSFET at 600 V and 25 °C,
when I is varied to 20 A, 70 A, and 120 A, compared with
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the conventional SSGD, the proposed SGGD reduces
ELoss by 17 %, 12 %, and 11 %, respectively, under the
loversHooT-aligned condition, while it reduces loversHooT
by 17 %, 12 %, and 12 %, respectively, under the Eoss-
aligned condition.
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